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ACOUSTIC WAVE REFLECTION IN THE SUBCRITICAL
SECTION OF A LAVAL NOZZLE

N. V. Kokushkin

NOTATION
- /118%

pr. Ov ms Spherical coordinates reférred to the N-th. coordinate]
system;
aw v, iyf~ Cylindrlcal coordinates referred to the N-th coordinate

’ system;

7 | - Acoustic potential;

V! = grad P' - Vector of acoustic velocity;

vb - Vector of stationary velocity;

¢ ~ Speed of sound;

t - Time;

w - Circular frequency;

m - Mode of wave components;

M - Mach number;

Bj - Sequence of roots of equation 5;L4&ﬂ=0!when r=r,
(rc - radius of cylindrical section of-chamber®);

P v = T S

nj - Sequence of roots ofcgqqgtion é%fﬁﬁwwﬂﬁﬁﬁ when
e= 80

(eo - Angle of opening of nozzle conical section).
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in a study of the high frequency ("acoustic™) instability of
the operationalrppggggﬂ in combustion chambers of different types,
the necéssity arises of determining the reflection of acoustic waves

from the subcritical section of supersonic nozzles.

Several works have investigated this phenomenon [1-71.
An attempt 1s made in [1-3] to determine the acoustic impedance
of the nozzle by solving an ordinary linear differential equation
of the second order with variable coefficients, describing the
propagation of plane acoustic waves in a flow, whose|velocity
changes along the coordlnate (one-dimensional and linear formula-

tion of the problem).

Thus, the authors have investigated the propagation of plane
[1-3] and three-dimenslonal [4, 5] acoustic waves 1n a eylindrical
tube under the condition of a glven change in the axial stationary/119
veloeity component of the flow.

With this formulation of the problem, the effect of
reflection is determined only by an inhomogeneity of the
stationary flow. It is thus impossible to take into consideration
the reflection directly from the walls of the nozzle contracting
section.

This article proposes a method for solving the problem of
the reflection of acoustic waves from the nozzle subecritical
section. A real nozzle is replaced by a certailn model of a nozzle
made up of conical sections of "zones" (Figure 1). Each of
these zones coincides with a certain section of the flow In a

conical channel having the same angle of contraction.

Tt is assumed that the direction of the velocity of the
stationary flow 1is opposite to the direction of the radius vector

py of spherical coordinates. It is assumed that the magnitude of
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the stationary flow velocity is given; however, 1ts values must
not depend on the angular coordinate 8.

Under these conditions, it is possible to obtain particular
solutions of the equation of the acoustic potential in the normal
form, i.e., in the form of the product of the functions, each of
which depends only on one of the independent wvariables of the

-

curvilinear coordinates and time.

The general solution for the conical channel is cbtained by
summing the particular solutions of such a type [8]. The
acoustic field in the medel of the subcritical nozzle section
(Figure 1) 1s composed of sections of the solutions for the
corresponding conical channels. A system of algebraic equations,
which connects the amplitudes of the waves inciden%_dﬁrthé nozzle|
with the reflected wavesiis obtalned from the condition that the
values of these solutlions and their derivatives coincide at the
boundaries of the zones. The matrix of the coeffileclents of this
system is the desired characteristie of the reflective properties
of the nozzle. It is a generalization of the amplitude reflection
coefficient known from acoustics [8]. This method may be
developed for nozzles with a smooth change in the contour of the
suberitical sectdon.

The solutions of the equation of the acoustic potential
T R T : ‘ : ey
qu) - ——é%—i-—a—t—w(vnv’)] + [vograd (vyv?] + (v'grad L‘_g_l_}}, =0
in the case when the dependence on time may be taken into accoung
by the factor e/ have - -the form

@f¢=23ﬁ%mmmm+dmﬁnmmx
o m ) } _ | ( 1 )
X Z [Cgf?)ﬂﬁxlmi (55) "}" ngx?njxgmj (.‘L')j Jm (ﬂ}r)

| d= .



Figure 1. Diagram of subecritical nozzle sections.

in cylindrical systems of coordinates (when N = 1 and N = N¥ +1)

and
P s = Z(C{‘?f#. cos my - C‘z"f,],; sinmn) x ‘
. /120
% Y (B 0) + Cladiltams 1 2% O
= \ ( 2 )
in spherical coordinate systems( N=Q,”.,Nf 7.

Here Xmu@ﬂ and dexﬂ reflect the dependence of the acoustic
potential on the x coordinate for incident and reflected waves

in a cylindrical channel.

Thus Rmxpﬂare regular, when M = 1 and Ihmdéﬂ are irregular
solutions of Equation (8), given below.

The requlrement that the acoustic potential and its derivative
be equal, which are described in coordinate systems of conical
flows as applled to two adjacent zones (N-th and /N+1- th), glves)
the following relationship for each individual mode of
oscillations (m) at the "input" boundary of the(N+1l)th zone

(P;V = (P:"Hv
APN/OpN . = PN fPpna, N =41,2,...,N". (3)



It must be noted that no conditions are imposed on the
values of the stationary filow velocity vector close to the sur-
face of the solutions which are combined, and the veloecity on
both sides of this surface may differ in terms of magnitude and
direction. As the calculations and special determinations have
shown, small inaccuracies in the picture of the stationéry flow
have no great influence upon the parameters of the acoustic field.

When the solutions are "combined", the relationship is used
between the coordinates (pN, By 2 nN) and (pw+1, Ox+s, Myvee)] 1N two
adjacent zones, obtained from purely geometric considerations

™~ A}
sin {:1 - 9N+1}

i {Ova T BTNy — PNy T B\
1 { 3 atuugl_ A.‘L’N Y V“e‘:s\ 7 ;’:IJ

1 Axy N+l — PN+t m— Oy .
O n=0py4y- — — arct <l 2ogh ( ”1)], =
N ‘ Ni1® =5 . g [ AZx o1 - over g 5 Nw N+1

in the case of "combining" of the conical region with the

conical and

z®=z,4p; cos O;,
- r®=p;sin0;

in the case of "combining" of the cylindrical region of the
combustion chamber with the conical region II (Figure 1).

Multiplying Equation (3) by p,~(6) and integrating over the
corresponding interval of the change in the angle Oﬁﬁge%ﬂgﬁq .
and using the conditions of orthogonality of the systems of
attached| spherical Legendré functions, we obtain a system of
algebréic equations.

It must be assumed that the values of the coefficients: ),
in the solution (1) when N = 1 1n a combustion chamber, whiéh

characterize the amplitudes of the waves incident upon the nozzleJ
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are given, i.e., the system of algebraic equations obtained is ani
inhomogeneous system, and the terms containing the factors (ﬁmj
form the right hand sides of the equations.

The absence of a singularity for the solution close to the
critical nozzle section 1s expressed by the condition

ci OatN = N* 1.

2xmej

All the remaining values of C must be defined, including
the values of (Xﬂm characterizing the waves reflected from the
nozzle in the cylindrical section of the combusticn” chamber. /

Since the field of the acoustic potential in the general
case 1s expressed by infinite series (1), (2), the system of
algebralc equations obtalned will be an infinite system. There-
fore, in actual calculations, we must investigate a certain reduced

system of equations.

The matrix}of this system does hot dependion the form of
the waveé_ incident on the nozzle and is the acoustic characteris-
tic of the nozzle, which may be used when solving the problems of
oscillations and the stability of the operational process in the

combustion chambers.

Teo obtain complete agreement between the geometric model of
a real nozzle and a smooth change of the contour, in the relation-
ships obtained 1t is necessary to pass to the limlt when N —oof |
i.e., increasing the number of zones into which the entire flow
fleld is divided in the subsonic nozzle section.

It must also be required that the length of the zones in the
direction of the radius vector of the spherical coordinates pN uni\

formly strive to zero in the O<x<141nterval and that an unequivocal
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agreement hold between the number of the zone N<NY and a certain

pointx“ﬁof the axial coordinate, for example,.N=N%1—x”VLy.

Under these conditions, the sequences of theccorresponding

N Nety, ~01 {2) (N®+1}
values — for example, R%%,R&h,”.,Rgﬁv..”R&ﬁ s Cimss « - -y Clpms
and others — will more correctly represent a certain function

of the N- number of the zone and at the limit will change into

continuous functional dependences

R = Ry (@), |
Ciomi— Cy; (2™) [ ete.

In accordance with this, the serles of algebralc equations
with ldentical values of the index j, indicating the number of the

row in the blocks of the matrix, are transformed into the relation-

shilp between the functions of the argument X(N):

Y C1 @A @) — €y (5 + AT Ry (a) 4
+ Y Cou @) Boj (50) — Cyy (™ 4 Azt) Ry, (29) = 0,
EC“ N A;j (atVY —‘Cn (.r.(N) e ATtV R;J (x(N)) + -

+ ZC‘*" () Byj (%) — Coy (2™ + Azt Ry (z) = 03 j,v = 0,1, 2, 3,..., {r,\ (5)

where we set

N+t N
Az =gV g . ‘

cos eo(N) _
A= § Rl O PRON O PREy (c03) nF )
) .
(6)
cos eo (N)
BMi= N Roilpw. On) Pl (on, Ox) PJ5 (0x) d (c05 By)
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- arle the coeffilcients of the expansion in series of the

functions (RwPw™) and (Ru.Pw") in powers of] Pa"f

Substituting the expressions

Ciilxr + Ar)y=Cy;(7) + — Az,
d(‘g, A

CZJ * + Ar) == Cy; () -+

in (5) and setting

ARy — AR

Ay = Tim el — A R
ot 1= ax—o (RuRy' — 1y/Ry) Az

AR, — ARy

Ay = Tim —rifty = Ao B
2 AILO (BEJRIJ jo Rl}i) Az

B R _— B. "Rn'

B i = Iim w3 ’2| _ ;“ 2J
14 ' (RIJR‘ZJ — H!-J RQJ’) AI

Ax—p ' :
B T R
where v#j ,
e v ey o mE
R L v v AL
O e ¥ S
B i e

where v=jj , relationships (5) may be transformed into the
following differential equations

dC,
1 Z (ClvAle T C"vBl‘u)

dc . 1—0 ) r\:)
d.: - ZOI(CMAZVJ + CouBay)s

j=0,1,2,...,%.

~
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The values of the amplitudes of the waves incident upon|
the nozzle at the input section x = L may be used as the boundary
conditions, and the fact must be taken into account that close to
the critical sectlon, there will be nc components expressed by the
functions 57"/, having a singularity in the critical sectlon at

M=1, f.e., all CHi"=0|

C“(L} ==(;,
C'z;(l)) =0, .
J=0,1,2,...,v.

Thus, the problem of the reflection of acoustic waves from
the subcritical section of a Laval nozzle is reduced to the solu-
tion of the linear boundary value problem for an infinite system
of differential equations. If we confine/ ourselves to an
examination of a finite number of differential equations pgjéﬁj s
the linear homogeneous boundary value problem with thesévbdundary /123
conditlons may lead to the solution Qﬂﬂ)mzﬁﬂﬂj+i\of the Cauchy
problem [9] (n - order of magnitude of the system).

A model consisting of a cylindrical section of the combustion
chamber combined directly with a coniecal convergent channel is
the simplest variation of the geometric model of a subsonlec section
¢f the nozzle. If it is assumed that the region of transition
through the speed of sound ig close, in terms of its geometric
form, to a spherical segment which "closes" the output from the
convergent channel, then there must be no solutions having a
singularity at/M = 1 .in the representation of the acoustilc
field in spherical-coordinates in the conical section of the nozzle:

C s = 0.

An examination of this problem i1s interesting, due to the

fact that it makes 1t possible to determine the effect of reflection

from a single "bend" of the reflecting rigid shell of the
chamber — the nozzle, and in this sense it characterizes one of

9



the elements comprising the geometric model of the nozzle of a
more complex form. In addition, the results obtained in the
solution of this probiém satisfactorily coinecide with the
known experimental data, and therefore they are of practical

importance.

In this case the system of equations has the form

-~

3 )
2: I I i pil E:I I
Cf,.t)ﬂ'lvB'Sﬂ)'Jj Cgp%usz} == ng)vamvjr
, v=0 : =0 .

(7
E f I I I1 I § f I Iy
C;x)mvB'::nl) Cgmsz( ) C$ \-)mv inljs

V=0 ;o v=0

j:O,LZ,...,»

In the calculations, it is advantageous to study the
effect of reflection for each of the wave components of the
incident) wave individually. This means that only one of the

values (12@ differs from zero. If the given component has the

index Y=v/ , we may set Cips =1,C =0] for ~ve=v/ .

The coefficients Aﬂg/and zﬂﬁ/ in the right 51de of the
system (7), are calculated accordlng to the formulas (6). 'The
values of BY,l and BL) are also calculated according to the
formulas (6). The functions Awmi(zj/ and Rum(z)/ 1in them have the

following form in fthils case

CEM 4 V/L By (1—1\12)

Ximj == 0Xpi T\
M — Y # — (1 — M2
X2m} — expl V {1 — Sl.', : ) x

Thilis is the solutlion of the equation

X7 (4 — M) — X (,Lm +2M —aM—) + X —ph =

Y™
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at M = const, which reflects the waves which are 1ncident (Xmﬂf
and reflected.(Xmﬂfin the cylindrical section of the combustilon
chamber. The value of k reflects the dimensionless frequency

k = wpcr/c, where Pop — spherical radius of the critical section.
The Legandre functions l%ﬁ? may be replaced by the Bessel
funections.

The functions Hﬂﬂ}and their derivatives with resgpect to p

are solutlions of the equation
. A2 o AM »(n; - |
R — MY+ i {2 paimm— om OM [z..i;.Ll] .- J
R dp)+k it K (8)

which are regular when P=Pop" The dependence of the Mach

number on the spherical coordinate p 1s assumed to be given.

In the calculations of this study, it is given in the form

. (p )21 (p )s | (p - \).10|
_ cr . cr . “er
M = m2 P A m6 0 +mlo o

1.e., in the form of the first three terms of the expansion

in series of the gas dynamic function q(M) [10]. The values
of the coefficlents m; are functions of the adlabatic index.
However, their values must be "corrected" with respect to the
condition 21”h=:7 since

i

ML) = 1

cr

All of the calculational results given below were obtained
on computers of the BESM-3M and BESM-4 types. The programs
were complled using the a-translator, with standard programs
and procedures. The duration of a calculation of one variation,
1.e., the calculation of the acoustic field of the nozzle of a

specific geometric form (pi, eo), when a certain wave (kJﬁ%wW

11
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18 1neident on the nozzle,'iﬂ 25=-30 minutes.

The maximum order of the wave components examined was five

when (v+{=5)which leads to the solution of the system of]

algebraic equations with real coefficients of the 20th order
(the SP-0143 was used).
Amplitudelicn
O

eO-J‘ : pi a*=1 Y =2 n* =3 ar =1 n* == b
15 1.0 1;5*‘ 0,595268 0,525812 0,525651 0.525662 |+ 0.525667
15 3,0 1,8 0,2443 0,24305 0,24236 0,21199 0,24177
. 15 6,0 |1,5 0,05344 0,064826 0,06646 0,06758 0,067404
30 1,0 {1,056 | 0,1085 0.0974 o 1011 0,1003 - 0, 1006
30 1,0 |20 0.6431 0,65354 0 ‘653382 0.653411 0,653400
30 1,60 130 0,62055 0,62518 0,62335 0,62241 0,62i 88
30 6,0 §t,5 0,0509 0,04321 0048006 0,04928 1 0,04945
30 16,0 {14,5 0,0366 0.0373 0,0386 0,378 0.0105
45 |o,1 |I,5 0,56477 0,56478 0,56480 0,56483 0,56481
45 1,0 1,5 | 0,5324 0,508 0,5366 0,5377 0,5374
45 3,0 11,5.] 0,3070 0,4295 0.,3719 0,32898 0,3844
45 50 1,5 40,0616 0,1142 0, 1421 0,1315 0,1332
60 1,0 1,5 | 0,546 0,560 0,541 D,552 0,547

- 6D 30 11,5 0,422 0,375 0,354 0,360 0,362
75 o,l {1,5 05652 0.5654 0,5648 0,5653 10,5649
75 0,5 [1,5 0,367 | 0,582 0,553 0,584 0,553
91 0,0l | 1,5 0,56311 0,56314 3, 56505 —— -

90 0,001] 1,5 0,565104 0,565107 {,565104 -— ‘ —

¥ Translator's note: Commas in numbers represent decimal points.

During the calculations, a comparison was made of the

results obtailned for different values of n'=v+i. Some of these
values are given in the table. The values are given of the
amplitude of the first wave component of the reflected wave |Cai!
(i.e., a "plane" wave)} in the case of the incidence on the
nozzle of the first wave component v'=0 (i.e., the "plane" wave)
for different frequencies k and nozzles of differing geometric
form (pi, 60). The data given point to a great ("rapid")
convergence of the 021 computational results wilth an increase
in the number n#¥ of the investigated terms of the series of
expansions (1), (2) at small angles of the conical subsonic
sectlon of the nozzles (the angles GO = 15°, 30°, 45°).

12
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Flgure_2. Dependence of reflection coefficlient for potential
amplitude upon length of subcritical nozzle section at 65 = 30°

for different oscilllation frequencies k. Plane waves (m=0 y"=04
[—k=01; 2—1,0:-3—120; £4—3,0; 5 —40; 6—50; 7 — 100
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Figure 3. Dependence of the C21 coefficient modulus of the

potential amplitude of the first wave component of the reflected

wave on the frequency k for nozzles with differing lengths of the
subcritical section (m = 0; v¥ = 0; 0 = 30°):

o]
1- pi = 2.0; 2- 1.5; 3- 1.25
AlEy ,
46 %\H A
“‘Qh“-\. /z
- g4 S
by ]
- SUN%
42 S, L ;
kn"‘c..ﬁ%.—l ,4
) o 2% 0god
L2 A R e R A I

Figure 4. Dependence of reflection coefficient modulus for po-
tential amplitude upon the frequency k for nozzles with differing
angles of the subcritical section cone (m = 0; py = 1.5 vk = 0):

1- 9§, = 60°; 2~ 30°; 3~ 45°; 4-15°,
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/126

With an increase in the angle and ah.lnerease in the
frequency k, the convergence deteriorates. Thus, at 60= 75°,90°,
the calculations are only possible (at rﬁ=§+1=4 ) for very low
frequencies (k = 0.01; 0.001). To l1ncrease the accuracy of the

results under these conditions, it is necessary to examine a

larger number of terms in the series.

Figure 2 shows the dependence of the wave component of a
reflected wave on the length of the subsonic¢ nozzle section at
different frequencles and angle of the cone. 8 = 30°. A
decrease in the reflection is characteristic with the decrease
in the length of the subsonic section, i.e., with an increase in
the "opening" of the combustion chamber and an increase in the

Mach number at the input to the nozzle

'IF“|*O‘ at py*ls Pop =1

The reflection of the "longlitudinal" wave also decreases

with an increase in the fregquency k.

Tigure 3 shows the frequency characteristics of these wave
components for nozzles of differing lengths, and Figure 4y — for

14



nozzles wilth differing input angles. It can be seen from these
figures that at k*OJthe reflection coefficient does not depend

on the geometric form of the subsonie section (angle eo) but
depends on Py i.e., on the Mach number at the nozzle inlet.

From the physical point of view this can be explained: with a
decrease in the frequency and an increase in the wavelength,

any of the nozzles, except for the dependence on its shape, may be
regarded as a "sudden" decrease in the channel section. With an
increase in the frequency, the reflection coefficient decreases.
The exlsting characteristic maxima correspond, as a rule, to the

criftical values of the frequency
k=ﬁ,(1—-Mz) Ih.

The compariscon, shown in Figure 5, =of: the amplitudes of
the first ("plane", "longitudinal") wave component of the
reflected wave and the second ("radial) wave component of the
reflected wave, in the case of incidence)of "plane" and "longi-
tudinal"” waves, shows that as the frequency approaches its
critical value the "radial" component in the reflected wave
~greatly exceeds the "longitudinal and plane'" component. ThisAI
shows that at such frequencies, it is not permissible ﬁo examine
the problems of stability of the operational process in the
combustion chamber in the one-dimensional formulation.

There are limited possibllities for comparing the results
of the calculations with experimental data. Out of the experi-
mental investigations on this problem whilch are known in the
literature, only the experimental conditions used in [2,7] can
be used to make such a comparison. The study [2] measured the‘
damping decrement of the oscillations w, and the acoustic
gquality @ under the conditicns of a model combustion chamber (at

one frequency f=348/Hz) in the case of cold air. The ratio of the

15



areas of the eritieal nozzle-disk section and the pass-through /127

section of the chamber J = Fcr/Fch U<j<04 were varied. The
results are glven in the form of the dependence of o on Jj. Utliliz-
ing the relationship

Cyy ) ¢ Vo . - :
A= E - E-Z(i— Cay- T+E_ﬂ_ _.( . ICzll)L_|_-1—M.c_"
T2E T 2k - [tnl/ a 2 a’

in which the second term expresses the convective output of

&

acoustic energy, and a-— the chamber length, we may express the
amplitude reflection coefficlent by the value of o measured in
[2] and the Mach number, which is unequivocally connected with
the parameter j, and j = pcre/pie. Since a véry short "nozzle"}
disk was used in the experiments, a comparison must only be made
with fthe results of calculations at]ﬁlqy. Figure 6 gives such a

comparison.

The data of the experimental study given in [6] pertain to
transverse osclllations (m = 1). On the graphs in this study,
the change of the real and imaginary section of the acoustic
conductivity is extremely contracted along the ordinate axils,
which makes i1t impossible to perform an objective comparison of -
the experimental and ftheoretical calculations due to the diffi-
culty of accurately computing the data from the graphs [6].

Similar data for plane waves {(m=0) are given in [7] in a form
which is more advantageous for processling: the scale along the

ordinate axis 1s increased by one order of magnitude.

Figure 7, a and b gives a comparison of the values of the
amplitude reflection coefficients for pressure fluctuations

]RI:}}‘;yéobtained from data in [7] with the values calculated
+y

éccording to the preoposed method on a computer. Since the fre-
quency of the oscillations 1in the experiments was small (much

16
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Figure 6. Comparison of experimental data from [2] with the
calculated value when k»+0; 1~ experiments; 2- calculations.
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Figure 7. a. Comparison of experimental data [9]‘with ¢calcu-
lations (m = 0; M, = 0.08): 1- experiment; 2- calculation.

b. Comparison of experimental data [9] with calculations (m = 0;
M, = 0.06): 1- experiment; 2- calculation.

less than the critical frequency of the tube), the form of the

nozzles could have no significant influence upon the reflection

of acoustic waves. Therefore, the comparison was made with a

certaln conical nozzle having the same ratio 5E]the input area

to the critical section area. The relatlicnship between the
theoretically calculated value of iCul:|C:]l and the reflection
coefficient for the pressure amplitude |7]] 1s expressed in the /128

case of stationary flow in the case of plane waves by the

rvelationship

17
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which may be readily obtained from (1}, using the relationship

between the acoustic potential and the acoustic pressure.

CONCLUSIONS

1. The method proposed makes it possible to solve the problem
numerically in general form in a three-dimensional formulation

with a small amount of machine time.

2. The characteristic of the acoustic properties of the nozzleﬂ
"the reflection matrix",jmay be used as a boundary condition when
solving the problem of fluctuations in the combustion chamber in

the case of composite multicomponent acoustic fields.

3. The basie relationships obtained for the reflection from

the suberitical section of conical nozzles (dependence of
reflection on the Mach number at the nozzle input, angle of
contraction of the conical section, frequency characteristics)
show that a) At low freqguencies of oscillations, the form of the
subcritical section of the nozzle has no great influence;|

b) ‘The radial components playhan important role in the formation
of the acoustic field when the frequency approaches 1ts critical
value; in thils frequency range, the stability problems cannot be
examined in the one-dimensional formulation; ¢) There 1is a general
tendency for a decrease in the components of the reflected wave
with an inerease in frequency; d) The results of the calculations

are in satisfactofy agreement with the known experimental data.
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